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Abstract- The role of production scheduling is indispensible in the environment of manufacturing and service 
industries. Continuous machine operation or No-idle time on machines refers to the environment of production 
scheduling in which the machines once started work continuously to process all the jobs from first to last. The 
classical problem in flow shop scheduling is the minimization of makespan under different environments. The 
problem of makespan minimization in flow shop scheduling under continuous machine operation or no-idle 
situation is NP-hard. The heuristic proposed in this paper works on the principle of basic insertion to solve the 
flow shop problem for processing n-jobs on m-machines with continuous machine operation. The proposed 
constructive heuristic is compared with important heuristics solving no-idle problem that exists in flow shop 
literature. The computational result on Taillard‟s benchmark problems shows the superiority of the heuristic 
proposed over other heuristics.  
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1. INTRODUCTION 

Production scheduling plays a vital role in 

manufacturing and service industries. For improving 

the production efficiency of the system, one must use 

effective and efficient solutions for manufacturing and 

scheduling technologies for the rapidly changing 

market demands having great competitive 

environment. According to the different industrial 

setups in flow shop, there prevail different constraints 

either on the jobs or on the machines to complete the 

task. The two important constraints in flow shop 

scheduling problem are No-wait of jobs and No-idle or 

Zero-idle time on machines. The No-wait flow shop 

scheduling problem (NWFSP) is an important branch 

of scheduling problems which related to „zero buffer‟. 

It arises due to the characteristics of jobs processing 

producing certain products, where the processing of 

jobs demands the processing to be continuous. The 

continuous flow shop originates in the scheduling 

theory because of the production environment in 

industry. In many flow shops, the production 

environment is such that the delay in job processing 

between the subsequent machines is not allowed i.e. 

the assumption of infinite storage capacity between 

the machines in flow shop is no longer valid. For 

maintaining the continuous flow of job, the processing 

of jobs is delayed on the first machine so that the jobs 

do not wait in the subsequent processing on machines.  

Various applications can be found in the industry 

related to this type of flow shop. For example, the  

 

 

process of making iron sheets in industry involves the 

no-wait situation as the sequence in which the jobs are 

processed after the heating of iron is to be continuous 

so that the temperature of heated iron falls within the 

permissible interval specified. This constraint is 

necessary for the defect free production of iron sheets 

and making the good quality product. Also, in food 

processing industry, the food is canned immediately 

after the food is prepared so that the food quality is 

maintained. However, to maintain freshness in the 

food the continuous flow in the sequence of jobs 

processing is maintained throughout the process. In 

contrast to no-wait, the no-idle situation in some 

production scheduling occurs if the operation of the 

machines is not permitted to interrupt once started as 

their interruption causes increase in cost or decreases 

the benefits. The reason for this is the expensive parts 

used in the operation of machines with cost depending 

upon the actual time of operating or the environment 

of the manufacturing system does not allow. Such type 

of scheduling problem is known as no-idle flow shop 

scheduling problem. The problem of no-idle time of 

machines in the scheduling literature is also referred to 

Continuous Machine Operation (CMO). To maintain 

the no-idle environment in flow shop, the machines 

needs to be delayed for processing the first job so that 

idle time on machines for job processing is reduced to 

zero from start of processing to completion of jobs. 

Clear examples are the steppers used in the production 



International Journal of Research in Advent Technology, Vol.6, No.9, September 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

2255 

 

of integrated circuits by means of photolithography. 

Other examples come from sectors where less 

expensive machinery is used but where machines 

cannot be easily stopped and restarted. Ceramic roller 

kilns, for example, consume a large quantity of natural 

gas when in operation. Idling is not an option because 

it takes several days to stop and to restart. Other such 

example includes the production of glass fiber. The 

temperature inside the furnace for molten made from 

glass is maintained at high temperature, the furnace 

once stopped halts the production as it takes time in 

days to retain that temperature [7].  

Adiri and Pohoryles [1] was first to study the m-

machine no-idle situation in flow shop and showed 

that the problem 
2 max/ /F prmu C can be referred as 

the problem
2 max/ , /F prmu no idle C i.e. these two 

problems are equivalent. The solution of this can be 

obtained by applying Johnson [6] algorithm. For 

details relating to permutation (prmu) flow shop, one 

may refer to Pinedo [17]. Narain and Bagga [12] also 

developed an algorithm based on branch and bound 

method for two stage flow shop scheduling problem 

with objective as total flow time under no-idle 

condition. The problem related to 

3 max/ , /F prmu no idle C have been studied 

extensively some researchers. Baptiste and Hguny [3] 

gave a integer linear programming model for solving

max/ , /mF prmu no idle C , and a corresponding 

branch and bound algorithm; also see Saadani et al. 

[21]. Saadani et al. [19] explains the environment of 

no-idle in a three-stage production of engine blocks in 

a foundry which includes the casting of sand moulds 

and sand cores. Narain and Bagga [2] formulated the 

three stage flow shop problem minimizing the total 

elapsed time with zero idle time on machines. He 

illustrated that it is not necessary that the sequence 

having minimum total elapsed time also possesses the 

same under no-idle constraint. They discussed the 

concept of sequencing in rental situations under 

specific rental policy. The idle time on the first 

machine is always zero as first machine is required 

only for the time equal to the sum of the processing 

time of all the jobs on it. Under the circumstances of 

scarcity of funds, the machines have to be taken on 

rent or hired in order to complete the assignments. 

Hiring of machines enable saving working capital, 

give option for having the equipment, and allow the 

up-gradation to new technology. Minimization of the 

total hiring cost of machines would be the criterion in 

these types of situations. In this direction, they did 

 some work and explored the area for solving this 

problem [14].  

Kamburowski [9] identified the simple network 

representation of total elapsed time which efficiently 

solves the three machine flow shop problem under no-

idle situation. Besides this, the results of three 

machine problem are extended to m-machine no-idle 

flow shop problem. Woollam [24] studied the problem 

of no-idle time of machines using various benchmark 

heuristics like NEH heuristic [15] when modified to 

no-idle problem and other heuristics known for 

makespan problems. Narain and Bagga [13] gave four 

algorithms using branch and bound technique to solve 

n-job, m-machine flow shop problem under no-idle 

situation with objective of minimizing total elapsed 

time in which processing time of jobs follow certain 

relationship. Corresponding to these algorithms, 

theorems have been proved to show when one should 

hire the machine on rent to minimize total rental cost 

of machines. Saadani et al. [20] presented the model 

of 
max/ /mF prmu C  problem with travelling salesman 

approach by using the nearest insertion technique and 

implemented with the help of the solver. Kalczynski 

and Kamburowski [7] proposed a improved heuristic 

based on the Johnson algorithm which outperforms the 

heuristic of Saadani et al. [21] and the modified NEH 

for no-idle constraint. Apart from this heuristic, 

Kalczynski and Kamburowski [8] have discussed no-

wait and no-idle flow shops scheduling with makespan 

criterion and found that makepan with no-idle 

constraint is not the increasing function of processing 

times of jobs. Goncharov and Sevastyanov [5] have 

given review and approximation on the flow shop 

problem with no-idle constraints.  Ruiz et al. [18] 

studied the variant of the classical permutation flow 

shop problem with makespan criterion with no-idle 

constraint. Baraz and Mosheiov [4] proposed the 

improved greedy (IG) heuristic with an improvement 

step involving pairwise exchange of jobs. 

Makuchowski [11] shows the significant correlation 

between the two variants of NEH algorithm for 

makespan with no-idle and without no-idle constraint 

i.e. the algorithm used for solving problem without no-

idle can be effectively used for no-idle problems. 

Recently, Xiaoxia, and Yunhong [25] proposed a 

probability based model for solving mixed no-idle 

permutation flowshop scheduling problem.  

Since, with advent of time the problem 

max/ , /mF prmu no idle C is also solved by using 

metaheuristics for getting high quality results. Various  



International Journal of Research in Advent Technology, Vol.6, No.9, September 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

2256 

 

papers such as Pan and Wang [16], Seido Nagano and 

Januário, [22], Zhou and Chen [27], Li et al. [10] and 

Yazdani and Naderi [26] used metaheuristics for 

solving
max/ , /mF prmu no idle C . This describes the 

significance of proposing improved constructive 

heuristic algorithm for providing the good initial 

solution to various metaheuristics. This is in turn 

implies that results of the metaheuristics can be 

improve further by the proposed constructive 

heuristic. In this work, a constructive heuristic is 

proposed and is compared with two important 

heuristics namely the improved greedy (IG) and  

Kalczynski-Kamburowski (KK) heuristic on various 

Taillard [23] instances. The computational result on 

Taillard‟s instances shows the superiority of the 

proposed heuristic (PH) over both the heuristics.   

The rest of paper is organized as follows: the section 

two deals with problem formulation. Section three 

explains the proposed heuristic algorithm. In section 

four, the working of the proposed heuristic algorithm 

is explained. Section five reports the results along with 

analysis of the results obtained. At the end, we 

conclude the paper in section six followed by 

references. 

2. PROBLEM FORMULATION 

Let some job i (1 )i n   is to be scheduled 

on machine (1 )j j m   in the same technological 

order with criteria to be optimized as minimization of 

makespan under no-idle constraint i.e.
maxC . The 

general assumptions under which the n-jobs are 

processed through m-machines are: Pre-emption of 

jobs is not permitted. All jobs and machines are 

available at the beginning of processing. The machines 

are available throughout the processing and never 

breakdown. Each job is processed through each of the 

machine once and only once. Each machine can 

perform only one task at a time. The setup times of 

jobs on machines are negligibly small and hence can 

be ignored or are included in the processing time of 

jobs. 

Let 
,i jt be the time of processing of the job i 

on the machine j, ,
1

m

i i j
j

T t


  be the sum total of 

processing times corresponding to job i on m 

machines. For calculating the makespan of a schedule 

of n-jobs in a no-idle situation concerning flow shop, 

we have to first find the time of initiation of machines 

so that the machines start processing jobs without any 

idle time on them. Following this, we denote this 

initiation of machines by Lj, j = {1,2,3,…..,m}. 

Clearly, L1 = 0. We calculate the initiation of machines 

denoted by Lj as follows: 
1

1 ,( 1) ,
1

1 1

max , {2,3,...., }
k k

j j i j i j
k n

i i

L L t t j m


 
 

 

 
    

 
   

After the calculation of values of Lj , the makespan 

maxC can obtained from the following equation as: 

 

max ,

1

n

m i m

i

C L t


  .  

3. PROPOSED ALGORITHM 

The steps formulated for algorithm 

concerning flow shop scheduling problem, processing 

n-jobs through m-machines with objective of 

minimizing makespan under no-idle constraint (
maxC ) 

are given below. 

Step1. Find the sum total of the processing time Ti of 

every job i (i=1,2,3,…,n) on the given m-machines by 

the expression: ,
1

m

i i j
j

T t


  .

 Step2. Exhibit the job list according to the decreasing 

values of Ti so obtained in step 1. 

Step3. Take the first two jobs from the job list. Find 

the two-job partial sequence with minimum 
maxC out 

of the possible two job sequences. Select it as the 

current partial sequence. If there is a tie for 
maxC , 

select that two job sequence for further construction of 

jobs in which the first job is with lower index to break 

the tie. 

Step4. Take the next job from the job list and insert in 

all possible positions of the partial sequence obtained 

in step 3. Find the partial sequence with minimum

maxC . This is the current sequence for further 

construction of final sequence of jobs. Break the tie if 

any as per step 3. 

Step5. Check if there is more than one job in the job 

list. If so, consider the next two jobs else go to step 4. 

Find the possible two-job partial schedule from these. 

Select the two-job partial sequence with minimum

maxC . Generate all the sequences by inserting the two-

job partial sequence at all possible locations of the 

partial sequence so obtained in step 4. Select the 

sequence with minimum 
maxC  as the current sequence. 

Next the first job of the latest pair of jobs is inserted in 

the all the possible locations of the current sequence to 

generate the possible sequences. If the any of these 

sequences have better result, then record that sequence 

as the current sequence. Break the tie if any as per step 

3. 

Step6. Repeat the step 4 and 5, if more jobs are 

present in the job list otherwise stop. The steps are 

repeated until all the jobs are scheduled. The sequence 
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so obtained is the final best sequence with minimum

maxC . 

4. NUMERICAL ILLUSTRATION 

Consider the following flow shop instance 

with number of jobs, n = 5: 

Table 1. Flow shop instance 

Job i Machine j 

Machine 1 Machine 2 Machine 3 

1 94 47 95 

2 43 10 31 

3 90 69 77 

4 47 22 31 

5 76 89 2 

As per the step 1, the sum total of the processing times 

for every job on the three machines is T1 = 236, T2 = 

84, T3 = 236, T4 = 100, T5 = 167. Following step 1, 

arrange all the 5 jobs in the order of decreasing values 

of Ti in the job list resulting in {1, 3, 5, 4, 2}. 

According to step 3, pick the first two jobs from the 

job list namely {1, 3}. The possible two job sequences 

resulting from {1, 3} are 1-3 and 3-1 with respective 

maxC = 356 and 356. Since, there is a tie for the 

selection of two job sequence for further construction 

of jobs. Therefore, picking the sequence 1-3 as per the 

step proposed to break the tie. This is the best current 

sequence. Now picking the next job 5 using step 4 and 

inserting it at all the possible locations of the current 

sequence generating the sequences  5-1-3, 1-5-3 and 

1-3-5 having 
maxC  =  432, 406 and 365 respectively. 

The best current sequence of jobs having minimum 

maxC  = 365 is 1-3-5. Now, pick next two unscheduled 

jobs {4, 2} from the job list. Find the minimum 
maxC

for the possible arrangement of {4, 2}. The 
maxC = 152 

for the partial sequences 4-2 and 2-4. Therefore, 

inserting the partial two job sequence 4-2 as block in 

the current best partial sequence so obtained in the last 

step generating the sequences 4-2-1-3-5, 1-4-2-3-5, 1-

3-4-2-5, 1-3-5-4-2 with 
maxC = 460, 485, 485, 433 

respectively. The sequence 1-3-5-4-2 becomes the 

current best sequence with minimum makespan. Now, 

insert the first job {4} of the last job-block in the last 

best sequence to generate 4-1-3-5-2, 1-4-3-5-2, 1-3-4-

5-2, 1-3-5-4-2 and 1-3-5-2-4 with 
maxC = 443, 452, 

452, 433, 427. The job sequence 1-3-5-4-2 retain as 

the best sequence. Further the second job 2 of the last 

pair is selected for inserting at all the possible 

locations of the current sequence generating the 

sequences 2-1-3-5-4, 1-2-3-5-4, 1-3-2-5-4, 1-3-5-2-4 

and 1-3-5-4-2 with 
maxC = 445, 460, 460, 427 and 433 

respectively. The sequence 1-3-5-2-4 is the final best 

sequence with minimum 
maxC  = 427. 

5. COMPUTATIONAL RESULTS 

IG (improved greedy) is a heuristic method 

put forward by Baraz and Mosheiov [4] for solving 

NFSP. Their numerical tests showed that the IG 

heuristic method performed better. KK is a heuristic 

developed by Kalczynski and Kamburowski [7] 

showed that the KK heuristic performed better than 

NEH when modified to no-idle (NEHM) problem. For 

the performance evaluation, the proposed heuristic 

(PH) is tested against the IG, KK heuristic and the 

results are compared to the solution produced by 

modified NEH for no-idle (NEHM) on 100-Taillard 

instances. These 100-Taillard‟s instances contain 10-

subsets having 10-problems each.  

Table 2. Makespan values for 20, 50-job 

Taillard instances  

Probl

em 

Insta

nces 

Makespan Proble

m 

Instan

ces 

Makespan 

20x5 NEHM PH 50x5 NEHM PH 

Ta001 1413 1408 Ta031 3028 3038 

Ta002 1456 1432 Ta032 3172 3160 

Ta003 1278 1294 Ta033 2876 2841 

Ta004 1396 1402 Ta034 3107 3057 

Ta005 1454 1463 Ta035 3158 3174 

Ta006 1463 1469 Ta036 3061 3047 

Ta007 1270 1295 Ta037 3120 3051 

Ta008 1341 1301 Ta038 3040 3030 

Ta009 1467 1417 Ta039 2700 2701 

Ta010 1262 1230 Ta040 2885 2884 

Avg 1380 
1371

.1 Avg 3014.7 2998.3 

20x10   50x10   

Ta011 2266 2247 Ta041 3652 3528 

Ta012 2198 2170 Ta042 3643 3639 

Ta013 2007 2029 Ta043 3676 3556 

Ta014 2048 1929 Ta044 3640 3755 

Ta015 1799 1867 Ta045 3507 3507 

Ta016 1835 1915 Ta046 4021 4023 

Ta017 1988 1881 Ta047 3753 3702 

Ta018 1931 1883 Ta048 4092 4082 

Ta019 2054 2022 Ta049 3640 3585 

Ta020 2011 1956 Ta050 3901 3867 

Avg 2013.7 1989 Avg 3752.5 3724.4 
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20x20   50x20   

Ta021 3482 3599 Ta051 5774 5898 

Ta022 3329 3234 Ta052 6367 6378 

Ta023 3578 3589 Ta053 5676 5671 

Ta024 3227 3313 Ta054 5968 5995 

Ta025 3433 3531 Ta055 5477 5503 

Ta026 3677 3615 Ta056 6300 6146 

Ta027 3584 3476 Ta057 5979 5969 

Ta028 3372 3335 Ta058 5785 5766 

Ta029 3480 3510 Ta059 5639 5628 

Ta030 3855 3943 Ta060 5800 5859 

Avg 3501.7 
3514

.5 Avg 5876.5 5881.3 

Table 3. Makespan values for 100, 200-job Taillard 

instances  

Proble

m 

Instan

ces 

Makespan Proble

m 

Instan

ces 

Makespan 

100x5 NEHM PH 100x20 NEHM PH 

Ta061 5848 5893 Ta081 9694 9680 

Ta062 5418 5418 Ta082 8820 8744 

Ta063 5355 5403 Ta083 9308 9237 

Ta064 5321 5333 Ta084 9619 9664 

Ta065 5836 5836 Ta085 9869 9777 

Ta066 5399 5383 Ta086 9049 9219 

Ta067 5735 5743 Ta087 9111 9007 

Ta068 5195 5204 Ta088 9005 9027 

Ta069 5588 5621 Ta089 9498 9455 

Ta070 5511 5477 Ta090 8825 8810 

Avg 5520.6 

5531

.1 Avg 9279.8 9262 

100x10   200x10   

Ta071 6853 6849 Ta091 11840 11860 

Ta072 6258 6189 Ta092 12560 12641 

Ta073 6817 6756 Ta093 13341 13386 

Ta074 6783 6629 Ta094 11844 11813 

Ta075 6484 6527 Ta095 12197 12154 

Ta076 6644 6658 Ta096 12015 12019 

Ta077 6942 6956 Ta097 11735 11664 

Ta078 7172 7176 Ta098 12397 12419 

Ta079 7371 7232 Ta099 11191 11044 

Ta080 7393 7429 Ta100 12624 12649 

Avg 6871.7 

6840

.1 

Avg 12174.

4 

12164

.9 

Both proposed heuristic and modified NEH for 

no-idle (NEHM) are implemented in MATLAB-

R2008a. The average relative percent deviation 

(ARPD) of the proposed heuristic (PH), IG and KK 

heuristic is calculated as the statistics for the 

performance measures.  

Relative Percentage Deviation calculated as:  

Relative Percentage Deviation (RPD) = 

 100heuristic NEH

NEH

Makespan Makespan

Makespan


 , 

Where,
heuristicMakespan is the value of the makespan 

obtained by the heuristic for a particular set of 

problems and 
NEHMakespan is the value of the 

makespan obtained from modified NEH for no-

idle(NEHM).  

The ARPD results of proposed heuristic, IG [4] 

and KK heuristic [7] are compared and are shown in 

table 4. It can be observed that the proposed heuristic 

(PH) outperforms IG heuristic in all the 100-Taillard‟s 

instances considered. The proposed heuristic (PH) 

performs well than KK heuristic for job instances from 

20x5 to 50x5 and for size 100x10 but KK features 

well for Taillard [23] problem instances of size 50x10 

and larger except 100x10. For the overall average, it 

can be seen from table 4 that ARPD obtained by 

proposed heuristic (PH) algorithm is better than both 

IG and KK. That means that the makespan obtained by 

proposed heuristic (PH) algorithm is smaller than 

those by IG and KK. 

Table 4. Comparison of IG, KK and Proposed 

Heuristic (PH) 

Taillard 

problem 

instances 

Average Relative Percentage 

Deviation 

IG KK PH 

20X5 9.19 0.87 -0.63 

20X10 8.37 2 -1.18 

20X20 5.4 1.29 0.37 

50X5 11.53 -0.03 -0.54 

50X10 12.34 -1.79 -0.75 

50X20 12.44 -0.55 0.1 

100X5 16.4 -0.24 0.19 

100X10 13.98 0.08 -0.46 

100X20 14.78 -2.57 -0.19 

200X10 17.18 -0.55 -0.1 

Overall Avg 12.16 -0.15 -0.32 

6. CONCLUSION 

In this paper, a constructive heuristic 

algorithm is proposed for solving no-idle flow shop 

scheduling problems. Under no-idle constraint the two 

more objective such as total flow time of jobs and 

mean flow time are also achieved as these problems 
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are equivalent under the no-idle constraint. The 

operational cost of the machines is also minimized as 

the machines are delayed in their operation and also 

they work continuously without waiting for any job. 

The proposed heuristic (PH) algorithm outperforms 

the two well known IG and KK heuristics existing in 

the literature on the 100-Taillard problem instances. 

The ARPD of the proposed heuristic (PH) is -0.32 as 

compared to the IG and KK heuristic with 12.16 and -

0.15 respectively. The proposed heuristic (PH) 

algorithm therefore can be the taken as the good initial 

solution to the various metaheuristics, thereby 

improving upon the solutions. The main aim is to 

provide a good initial solution to various algorithms 

based on the metaheuristics so that the results of these 

metaheuristics can be improved further.  
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