
International Journal of Research in Advent Technology, Vol.6, No.9, September 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2254

Minimizing Makespan in Flow Shop under Continuous

Machine Operation

Kewal Krishan Nailwal
1
, Deepak Gupta

2
, Kawal Jeet

3

Department of Mathematics, Apeejay College of Fine Arts, Jalandhar, Punjab,India
1

Department of Mathematics and Humanities, M.M. University Mullana, Ambala, Haryana, India
2

Department of Computer Science, D.A.V. College, Jalandhar, Punjab, India
3

kk_nailwal@yahoo.co.in
1
, guptadeepak@yahoo.co.in

2
, kawaljeet80@gmail.com

3

Abstract- The role of production scheduling is indispensible in the environment of manufacturing and service
industries. Continuous machine operation or No-idle time on machines refers to the environment of production
scheduling in which the machines once started work continuously to process all the jobs from first to last. The
classical problem in flow shop scheduling is the minimization of makespan under different environments. The
problem of makespan minimization in flow shop scheduling under continuous machine operation or no-idle
situation is NP-hard. The heuristic proposed in this paper works on the principle of basic insertion to solve the
flow shop problem for processing n-jobs on m-machines with continuous machine operation. The proposed
constructive heuristic is compared with important heuristics solving no-idle problem that exists in flow shop
literature. The computational result on Taillard‟s benchmark problems shows the superiority of the heuristic
proposed over other heuristics.

Keywords- Flow shop; scheduling; constructive heuristic; no-idle.

1. INTRODUCTION

Production scheduling plays a vital role in

manufacturing and service industries. For improving

the production efficiency of the system, one must use

effective and efficient solutions for manufacturing and

scheduling technologies for the rapidly changing

market demands having great competitive

environment. According to the different industrial

setups in flow shop, there prevail different constraints

either on the jobs or on the machines to complete the

task. The two important constraints in flow shop

scheduling problem are No-wait of jobs and No-idle or

Zero-idle time on machines. The No-wait flow shop

scheduling problem (NWFSP) is an important branch

of scheduling problems which related to „zero buffer‟.

It arises due to the characteristics of jobs processing

producing certain products, where the processing of

jobs demands the processing to be continuous. The

continuous flow shop originates in the scheduling

theory because of the production environment in

industry. In many flow shops, the production

environment is such that the delay in job processing

between the subsequent machines is not allowed i.e.

the assumption of infinite storage capacity between

the machines in flow shop is no longer valid. For

maintaining the continuous flow of job, the processing

of jobs is delayed on the first machine so that the jobs

do not wait in the subsequent processing on machines.

Various applications can be found in the industry

related to this type of flow shop. For example, the

process of making iron sheets in industry involves the

no-wait situation as the sequence in which the jobs are

processed after the heating of iron is to be continuous

so that the temperature of heated iron falls within the

permissible interval specified. This constraint is

necessary for the defect free production of iron sheets

and making the good quality product. Also, in food

processing industry, the food is canned immediately

after the food is prepared so that the food quality is

maintained. However, to maintain freshness in the

food the continuous flow in the sequence of jobs

processing is maintained throughout the process. In

contrast to no-wait, the no-idle situation in some

production scheduling occurs if the operation of the

machines is not permitted to interrupt once started as

their interruption causes increase in cost or decreases

the benefits. The reason for this is the expensive parts

used in the operation of machines with cost depending

upon the actual time of operating or the environment

of the manufacturing system does not allow. Such type

of scheduling problem is known as no-idle flow shop

scheduling problem. The problem of no-idle time of

machines in the scheduling literature is also referred to

Continuous Machine Operation (CMO). To maintain

the no-idle environment in flow shop, the machines

needs to be delayed for processing the first job so that

idle time on machines for job processing is reduced to

zero from start of processing to completion of jobs.

Clear examples are the steppers used in the production

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2255

of integrated circuits by means of photolithography.

Other examples come from sectors where less

expensive machinery is used but where machines

cannot be easily stopped and restarted. Ceramic roller

kilns, for example, consume a large quantity of natural

gas when in operation. Idling is not an option because

it takes several days to stop and to restart. Other such

example includes the production of glass fiber. The

temperature inside the furnace for molten made from

glass is maintained at high temperature, the furnace

once stopped halts the production as it takes time in

days to retain that temperature [7].

Adiri and Pohoryles [1] was first to study the m-

machine no-idle situation in flow shop and showed

that the problem
2 max/ /F prmu C can be referred as

the problem
2 max/ , /F prmu no idle C i.e. these two

problems are equivalent. The solution of this can be

obtained by applying Johnson [6] algorithm. For

details relating to permutation (prmu) flow shop, one

may refer to Pinedo [17]. Narain and Bagga [12] also

developed an algorithm based on branch and bound

method for two stage flow shop scheduling problem

with objective as total flow time under no-idle

condition. The problem related to

3 max/ , /F prmu no idle C have been studied

extensively some researchers. Baptiste and Hguny [3]

gave a integer linear programming model for solving

max/ , /mF prmu no idle C , and a corresponding

branch and bound algorithm; also see Saadani et al.

[21]. Saadani et al. [19] explains the environment of

no-idle in a three-stage production of engine blocks in

a foundry which includes the casting of sand moulds

and sand cores. Narain and Bagga [2] formulated the

three stage flow shop problem minimizing the total

elapsed time with zero idle time on machines. He

illustrated that it is not necessary that the sequence

having minimum total elapsed time also possesses the

same under no-idle constraint. They discussed the

concept of sequencing in rental situations under

specific rental policy. The idle time on the first

machine is always zero as first machine is required

only for the time equal to the sum of the processing

time of all the jobs on it. Under the circumstances of

scarcity of funds, the machines have to be taken on

rent or hired in order to complete the assignments.

Hiring of machines enable saving working capital,

give option for having the equipment, and allow the

up-gradation to new technology. Minimization of the

total hiring cost of machines would be the criterion in

these types of situations. In this direction, they did

 some work and explored the area for solving this

problem [14].

Kamburowski [9] identified the simple network

representation of total elapsed time which efficiently

solves the three machine flow shop problem under no-

idle situation. Besides this, the results of three

machine problem are extended to m-machine no-idle

flow shop problem. Woollam [24] studied the problem

of no-idle time of machines using various benchmark

heuristics like NEH heuristic [15] when modified to

no-idle problem and other heuristics known for

makespan problems. Narain and Bagga [13] gave four

algorithms using branch and bound technique to solve

n-job, m-machine flow shop problem under no-idle

situation with objective of minimizing total elapsed

time in which processing time of jobs follow certain

relationship. Corresponding to these algorithms,

theorems have been proved to show when one should

hire the machine on rent to minimize total rental cost

of machines. Saadani et al. [20] presented the model

of
max/ /mF prmu C problem with travelling salesman

approach by using the nearest insertion technique and

implemented with the help of the solver. Kalczynski

and Kamburowski [7] proposed a improved heuristic

based on the Johnson algorithm which outperforms the

heuristic of Saadani et al. [21] and the modified NEH

for no-idle constraint. Apart from this heuristic,

Kalczynski and Kamburowski [8] have discussed no-

wait and no-idle flow shops scheduling with makespan

criterion and found that makepan with no-idle

constraint is not the increasing function of processing

times of jobs. Goncharov and Sevastyanov [5] have

given review and approximation on the flow shop

problem with no-idle constraints. Ruiz et al. [18]

studied the variant of the classical permutation flow

shop problem with makespan criterion with no-idle

constraint. Baraz and Mosheiov [4] proposed the

improved greedy (IG) heuristic with an improvement

step involving pairwise exchange of jobs.

Makuchowski [11] shows the significant correlation

between the two variants of NEH algorithm for

makespan with no-idle and without no-idle constraint

i.e. the algorithm used for solving problem without no-

idle can be effectively used for no-idle problems.

Recently, Xiaoxia, and Yunhong [25] proposed a

probability based model for solving mixed no-idle

permutation flowshop scheduling problem.

Since, with advent of time the problem

max/ , /mF prmu no idle C is also solved by using

metaheuristics for getting high quality results. Various

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2256

papers such as Pan and Wang [16], Seido Nagano and

Januário, [22], Zhou and Chen [27], Li et al. [10] and

Yazdani and Naderi [26] used metaheuristics for

solving
max/ , /mF prmu no idle C . This describes the

significance of proposing improved constructive

heuristic algorithm for providing the good initial

solution to various metaheuristics. This is in turn

implies that results of the metaheuristics can be

improve further by the proposed constructive

heuristic. In this work, a constructive heuristic is

proposed and is compared with two important

heuristics namely the improved greedy (IG) and

Kalczynski-Kamburowski (KK) heuristic on various

Taillard [23] instances. The computational result on

Taillard‟s instances shows the superiority of the

proposed heuristic (PH) over both the heuristics.

The rest of paper is organized as follows: the section

two deals with problem formulation. Section three

explains the proposed heuristic algorithm. In section

four, the working of the proposed heuristic algorithm

is explained. Section five reports the results along with

analysis of the results obtained. At the end, we

conclude the paper in section six followed by

references.

2. PROBLEM FORMULATION

Let some job i (1)i n  is to be scheduled

on machine (1)j j m  in the same technological

order with criteria to be optimized as minimization of

makespan under no-idle constraint i.e.
maxC . The

general assumptions under which the n-jobs are

processed through m-machines are: Pre-emption of

jobs is not permitted. All jobs and machines are

available at the beginning of processing. The machines

are available throughout the processing and never

breakdown. Each job is processed through each of the

machine once and only once. Each machine can

perform only one task at a time. The setup times of

jobs on machines are negligibly small and hence can

be ignored or are included in the processing time of

jobs.

Let
,i jt be the time of processing of the job i

on the machine j, ,
1

m

i i j
j

T t


  be the sum total of

processing times corresponding to job i on m

machines. For calculating the makespan of a schedule

of n-jobs in a no-idle situation concerning flow shop,

we have to first find the time of initiation of machines

so that the machines start processing jobs without any

idle time on them. Following this, we denote this

initiation of machines by Lj, j = {1,2,3,…..,m}.

Clearly, L1 = 0. We calculate the initiation of machines

denoted by Lj as follows:
1

1 ,(1) ,
1

1 1

max , {2,3,...., }
k k

j j i j i j
k n

i i

L L t t j m


 
 

 

 
    

 
 

After the calculation of values of Lj , the makespan

maxC can obtained from the following equation as:

max ,

1

n

m i m

i

C L t


  .

3. PROPOSED ALGORITHM

The steps formulated for algorithm

concerning flow shop scheduling problem, processing

n-jobs through m-machines with objective of

minimizing makespan under no-idle constraint (
maxC)

are given below.

Step1. Find the sum total of the processing time Ti of

every job i (i=1,2,3,…,n) on the given m-machines by

the expression: ,
1

m

i i j
j

T t


  .

 Step2. Exhibit the job list according to the decreasing

values of Ti so obtained in step 1.

Step3. Take the first two jobs from the job list. Find

the two-job partial sequence with minimum
maxC out

of the possible two job sequences. Select it as the

current partial sequence. If there is a tie for
maxC ,

select that two job sequence for further construction of

jobs in which the first job is with lower index to break

the tie.

Step4. Take the next job from the job list and insert in

all possible positions of the partial sequence obtained

in step 3. Find the partial sequence with minimum

maxC . This is the current sequence for further

construction of final sequence of jobs. Break the tie if

any as per step 3.

Step5. Check if there is more than one job in the job

list. If so, consider the next two jobs else go to step 4.

Find the possible two-job partial schedule from these.

Select the two-job partial sequence with minimum

maxC . Generate all the sequences by inserting the two-

job partial sequence at all possible locations of the

partial sequence so obtained in step 4. Select the

sequence with minimum
maxC as the current sequence.

Next the first job of the latest pair of jobs is inserted in

the all the possible locations of the current sequence to

generate the possible sequences. If the any of these

sequences have better result, then record that sequence

as the current sequence. Break the tie if any as per step

3.

Step6. Repeat the step 4 and 5, if more jobs are

present in the job list otherwise stop. The steps are

repeated until all the jobs are scheduled. The sequence

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2257

so obtained is the final best sequence with minimum

maxC .

4. NUMERICAL ILLUSTRATION

Consider the following flow shop instance

with number of jobs, n = 5:

Table 1. Flow shop instance

Job i Machine j

Machine 1 Machine 2 Machine 3

1 94 47 95

2 43 10 31

3 90 69 77

4 47 22 31

5 76 89 2

As per the step 1, the sum total of the processing times

for every job on the three machines is T1 = 236, T2 =

84, T3 = 236, T4 = 100, T5 = 167. Following step 1,

arrange all the 5 jobs in the order of decreasing values

of Ti in the job list resulting in {1, 3, 5, 4, 2}.

According to step 3, pick the first two jobs from the

job list namely {1, 3}. The possible two job sequences

resulting from {1, 3} are 1-3 and 3-1 with respective

maxC = 356 and 356. Since, there is a tie for the

selection of two job sequence for further construction

of jobs. Therefore, picking the sequence 1-3 as per the

step proposed to break the tie. This is the best current

sequence. Now picking the next job 5 using step 4 and

inserting it at all the possible locations of the current

sequence generating the sequences 5-1-3, 1-5-3 and

1-3-5 having
maxC = 432, 406 and 365 respectively.

The best current sequence of jobs having minimum

maxC = 365 is 1-3-5. Now, pick next two unscheduled

jobs {4, 2} from the job list. Find the minimum
maxC

for the possible arrangement of {4, 2}. The
maxC = 152

for the partial sequences 4-2 and 2-4. Therefore,

inserting the partial two job sequence 4-2 as block in

the current best partial sequence so obtained in the last

step generating the sequences 4-2-1-3-5, 1-4-2-3-5, 1-

3-4-2-5, 1-3-5-4-2 with
maxC = 460, 485, 485, 433

respectively. The sequence 1-3-5-4-2 becomes the

current best sequence with minimum makespan. Now,

insert the first job {4} of the last job-block in the last

best sequence to generate 4-1-3-5-2, 1-4-3-5-2, 1-3-4-

5-2, 1-3-5-4-2 and 1-3-5-2-4 with
maxC = 443, 452,

452, 433, 427. The job sequence 1-3-5-4-2 retain as

the best sequence. Further the second job 2 of the last

pair is selected for inserting at all the possible

locations of the current sequence generating the

sequences 2-1-3-5-4, 1-2-3-5-4, 1-3-2-5-4, 1-3-5-2-4

and 1-3-5-4-2 with
maxC = 445, 460, 460, 427 and 433

respectively. The sequence 1-3-5-2-4 is the final best

sequence with minimum
maxC = 427.

5. COMPUTATIONAL RESULTS

IG (improved greedy) is a heuristic method

put forward by Baraz and Mosheiov [4] for solving

NFSP. Their numerical tests showed that the IG

heuristic method performed better. KK is a heuristic

developed by Kalczynski and Kamburowski [7]

showed that the KK heuristic performed better than

NEH when modified to no-idle (NEHM) problem. For

the performance evaluation, the proposed heuristic

(PH) is tested against the IG, KK heuristic and the

results are compared to the solution produced by

modified NEH for no-idle (NEHM) on 100-Taillard

instances. These 100-Taillard‟s instances contain 10-

subsets having 10-problems each.

Table 2. Makespan values for 20, 50-job

Taillard instances

Probl

em

Insta

nces

Makespan Proble

m

Instan

ces

Makespan

20x5 NEHM PH 50x5 NEHM PH

Ta001 1413 1408 Ta031 3028 3038

Ta002 1456 1432 Ta032 3172 3160

Ta003 1278 1294 Ta033 2876 2841

Ta004 1396 1402 Ta034 3107 3057

Ta005 1454 1463 Ta035 3158 3174

Ta006 1463 1469 Ta036 3061 3047

Ta007 1270 1295 Ta037 3120 3051

Ta008 1341 1301 Ta038 3040 3030

Ta009 1467 1417 Ta039 2700 2701

Ta010 1262 1230 Ta040 2885 2884

Avg 1380
1371

.1 Avg 3014.7 2998.3

20x10 50x10

Ta011 2266 2247 Ta041 3652 3528

Ta012 2198 2170 Ta042 3643 3639

Ta013 2007 2029 Ta043 3676 3556

Ta014 2048 1929 Ta044 3640 3755

Ta015 1799 1867 Ta045 3507 3507

Ta016 1835 1915 Ta046 4021 4023

Ta017 1988 1881 Ta047 3753 3702

Ta018 1931 1883 Ta048 4092 4082

Ta019 2054 2022 Ta049 3640 3585

Ta020 2011 1956 Ta050 3901 3867

Avg 2013.7 1989 Avg 3752.5 3724.4

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2258

.9

20x20 50x20

Ta021 3482 3599 Ta051 5774 5898

Ta022 3329 3234 Ta052 6367 6378

Ta023 3578 3589 Ta053 5676 5671

Ta024 3227 3313 Ta054 5968 5995

Ta025 3433 3531 Ta055 5477 5503

Ta026 3677 3615 Ta056 6300 6146

Ta027 3584 3476 Ta057 5979 5969

Ta028 3372 3335 Ta058 5785 5766

Ta029 3480 3510 Ta059 5639 5628

Ta030 3855 3943 Ta060 5800 5859

Avg 3501.7
3514

.5 Avg 5876.5 5881.3

Table 3. Makespan values for 100, 200-job Taillard

instances

Proble

m

Instan

ces

Makespan Proble

m

Instan

ces

Makespan

100x5 NEHM PH 100x20 NEHM PH

Ta061 5848 5893 Ta081 9694 9680

Ta062 5418 5418 Ta082 8820 8744

Ta063 5355 5403 Ta083 9308 9237

Ta064 5321 5333 Ta084 9619 9664

Ta065 5836 5836 Ta085 9869 9777

Ta066 5399 5383 Ta086 9049 9219

Ta067 5735 5743 Ta087 9111 9007

Ta068 5195 5204 Ta088 9005 9027

Ta069 5588 5621 Ta089 9498 9455

Ta070 5511 5477 Ta090 8825 8810

Avg 5520.6

5531

.1 Avg 9279.8 9262

100x10 200x10

Ta071 6853 6849 Ta091 11840 11860

Ta072 6258 6189 Ta092 12560 12641

Ta073 6817 6756 Ta093 13341 13386

Ta074 6783 6629 Ta094 11844 11813

Ta075 6484 6527 Ta095 12197 12154

Ta076 6644 6658 Ta096 12015 12019

Ta077 6942 6956 Ta097 11735 11664

Ta078 7172 7176 Ta098 12397 12419

Ta079 7371 7232 Ta099 11191 11044

Ta080 7393 7429 Ta100 12624 12649

Avg 6871.7

6840

.1

Avg 12174.

4

12164

.9

Both proposed heuristic and modified NEH for

no-idle (NEHM) are implemented in MATLAB-

R2008a. The average relative percent deviation

(ARPD) of the proposed heuristic (PH), IG and KK

heuristic is calculated as the statistics for the

performance measures.

Relative Percentage Deviation calculated as:

Relative Percentage Deviation (RPD) =

 100heuristic NEH

NEH

Makespan Makespan

Makespan


 ,

Where,
heuristicMakespan is the value of the makespan

obtained by the heuristic for a particular set of

problems and
NEHMakespan is the value of the

makespan obtained from modified NEH for no-

idle(NEHM).

The ARPD results of proposed heuristic, IG [4]

and KK heuristic [7] are compared and are shown in

table 4. It can be observed that the proposed heuristic

(PH) outperforms IG heuristic in all the 100-Taillard‟s

instances considered. The proposed heuristic (PH)

performs well than KK heuristic for job instances from

20x5 to 50x5 and for size 100x10 but KK features

well for Taillard [23] problem instances of size 50x10

and larger except 100x10. For the overall average, it

can be seen from table 4 that ARPD obtained by

proposed heuristic (PH) algorithm is better than both

IG and KK. That means that the makespan obtained by

proposed heuristic (PH) algorithm is smaller than

those by IG and KK.

Table 4. Comparison of IG, KK and Proposed

Heuristic (PH)

Taillard

problem

instances

Average Relative Percentage

Deviation

IG KK PH

20X5 9.19 0.87 -0.63

20X10 8.37 2 -1.18

20X20 5.4 1.29 0.37

50X5 11.53 -0.03 -0.54

50X10 12.34 -1.79 -0.75

50X20 12.44 -0.55 0.1

100X5 16.4 -0.24 0.19

100X10 13.98 0.08 -0.46

100X20 14.78 -2.57 -0.19

200X10 17.18 -0.55 -0.1

Overall Avg 12.16 -0.15 -0.32

6. CONCLUSION

In this paper, a constructive heuristic

algorithm is proposed for solving no-idle flow shop

scheduling problems. Under no-idle constraint the two

more objective such as total flow time of jobs and

mean flow time are also achieved as these problems

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2259

are equivalent under the no-idle constraint. The

operational cost of the machines is also minimized as

the machines are delayed in their operation and also

they work continuously without waiting for any job.

The proposed heuristic (PH) algorithm outperforms

the two well known IG and KK heuristics existing in

the literature on the 100-Taillard problem instances.

The ARPD of the proposed heuristic (PH) is -0.32 as

compared to the IG and KK heuristic with 12.16 and -

0.15 respectively. The proposed heuristic (PH)

algorithm therefore can be the taken as the good initial

solution to the various metaheuristics, thereby

improving upon the solutions. The main aim is to

provide a good initial solution to various algorithms

based on the metaheuristics so that the results of these

metaheuristics can be improved further.

REFERENCES

[1] Adiri, I. and Pohoryles, D. “Flowshop/no-idle or
no-wait scheduling to minimize the sum of
completion times”. Naval Research Logistics
Quarterly, 29(3), 495-504, 1982.

[2] Bagga, P.C. “Minimizing total elapsed time
subject to zero total idle time of machines in n X
3 flowshop problem”. Indian J. pure appl.
Math, 34(2), 219-228, 2003.

[3] Baptiste, P. and Hguny, L. K. A branch and

bound algorithm for the F/no− idle/Cmax.

In Proceedings of the international conference on

industrial engineering and production

management, pages, 429-438. 1997.
[4] Baraz, D. and Mosheiov, G. “A note on a greedy

heuristic for flow-shop makespan minimization
with no machine idle-time”. European Journal of
Operational Research, 184(2), 810-813, (2008).

[5] Goncharov, Y. and Sevastyanov, S. “The flow
shop problem with no-idle constraints: A review
and approximation”. European Journal of
Operational Research, 196(2), 450-456, 2009.

[6] Johnson, S.M. “Optimal two-and three-stage
production schedules with setup times
included”. Naval research logistics
quarterly, 1(1), 61-68, 1954.

[7] Kalczynski, P.J. and Kamburowski, J. “A
heuristic for minimizing the makespan in no-idle
permutation flow shops”. Computers & Industrial
Engineering, 49(1), 146-154, 2005.

[8] Kalczynski, P.J. and Kamburowski, J. “On no-
wait and no-idle flow shops with makespan
criterion”. European journal of Operational
research, 178(3), 677-685, 2007.

[9] Kamburowski, J. “More on three-machine no-idle
flow shops”. Computers & Industrial
Engineering, 46(3), 461-466, 2004.

[10] Li, L., Wu, X. and Wang, Z. “Research of no-idle
flow shop scheduling based on improved bacteria

foraging optimization algorithm”. Computer
Engineering and Applications, 17, 48, 2015.

[11] Makuchowski, M. “Permutation, no-wait, no-idle
flow shop problems”. Archives of Control
Sciences, 25(2), 189-199, 2015.

[12] Narain, L. and Bagga, P.C. “Flowshop/no-idle
scheduling to minimise the mean flowtime”. The
ANZIAM Journal, 47(2), 265-275, 2005.

[13] Narain, L. and Bagga, P.C. “Flowshop/no-idle
scheduling to minimize total elapsed
time”. Journal of Global Optimization, 33(3),
349-367, 2005.

[14] Narian, L. and Bagga, P.C. “Scheduling problems
in rental situation”. Bulletin of Pure and Applied
Sciences: Section E, 24, 2005.

[15] Nawaz, M., Enscore Jr, E.E. and Ham, I. “A
heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem”. Omega, 11(1),
91-95, 1983.

[16] Pan, Q.K. and Wang, L. “ No-idle permutation
flow shop scheduling based on a hybrid discrete
particle swarm optimization algorithm”. The
International Journal of Advanced Manufacturing
Technology, 39(7-8), 796-807, 2008.

[17] Pinedo, M.L. “Scheduling: theory, algorithms,
and systems”. Springer, 2016.

[18] Ruiz, R., Vallada, E. and Fernández-Martínez, C.
“Scheduling in flowshops with no-idle machines.
In Computational intelligence in flow shop and
job shop scheduling” pages 21-51, Springer,
Berlin, Heidelberg, 2009.

[19] Saadani, N.E.H. , Guinet, A. and Moalla, M.
“Three stage no-idle flow-shops”. Computers &
industrial engineering, 44(3), 425-434, 2003.

[20] Saadani, N.E.H., Guinet, A. and Moalla, M. “A
travelling salesman approach to solve the F/no-
idle/Cmax problem”. European Journal of
Operational Research, 161(1), 11-20, 2005.

[21] Saadani, N.E.H., Baptiste, P. and Moalla, M.
“The simple F2//C max with forbidden tasks in
first or last position: A problem more complex
that it seems”. European journal of operational
research, 161(1), 21-31, 2005.

[22] Seido Nagano, M. and Soriano Sampaio Januário,
J.C. “Evolutionary heuristic for makespan
minimization in no-idle flow shop production
systems”. Acta Scientiarum. Technology, 35(2),
271-278, 2013.

[23] Taillard, E. “Benchmarks for basic scheduling
problems”. European Journal of Operational
Research, 64(2), 278-285, 1993.

[24] Woollam, C.R. “Flowshop with no idle machine
time allowed”. Computers & industrial
engineering, 10(1), 69-76, 1986.

[25] Xiaoxia, Z. and Yunhong, L. “A tabu estimation
of distribution algorithm to solve the mixed no-
idle permutation flowshop scheduling
problem”. Computer Applications and
Software, 1, 049, 2017.

International Journal of Research in Advent Technology, Vol.6, No.9, September 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

2260

[26] Yazdani, M. and Naderi, B. “Modeling and
scheduling no-idle hybrid flow shop
problems”. Journal of Optimization in Industrial
Engineering, 10(21), 59-66, 2016.

[27] Zhou, Y., Chen, H. and Zhou, G. “Invasive weed
optimization algorithm for optimization no-idle
flow shop scheduling
problem”. Neurocomputing, vol. 137, 285-292,
2014.

